Probabilistic Encoding Models for Multivariate Neural Data
نویسندگان
چکیده
منابع مشابه
Probabilistic Neural Network Models for Sequential Data
It has already been shown how Artificial Neural Networks (ANNs) can be incorporated into probabilistic models. In this paper we review some of the approaches which have been proposed to incorporate them into probabilistic models of sequential data, such as Hidden Markov Models (HMMs). We also discuss new developments and new ideas in this area, in particular how ANNs can be used to model high-d...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولParametric Modelling of Multivariate Count Data Using Probabilistic Graphical Models
Multivariate count data are defined as the number of items of different categories issued from sampling within a population, which individuals are grouped into categories. The analysis of multivariate count data is a recurrent and crucial issue in numerous modelling problems, particularly in the fields of biology and ecology (where the data can represent, for example, children counts associated...
متن کاملModels for Multivariate Data Analysis
This paper reviews some models for exploring multivariate data. If a xed eeect model is used to deene a linear Principal Components Analysis (PCA), then risk functions can be deened and issues of metric and dimension optimality addressed. The model is then adapted to deene a functional PCA which can be used to the study of smooth sampled curves. Finally, this model is generalised, giving a curv...
متن کاملProbabilistic Models for Relational Data
We introduce a graphical language for relational data called the probabilistic entityrelationship (PER) model. The model is an extension of the entity-relationship model, a common model for the abstract representation of database structure. We concentrate on the directed version of this model—the directed acyclic probabilistic entity-relationship (DAPER) model. The DAPER model is closely relate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Neural Circuits
سال: 2019
ISSN: 1662-5110
DOI: 10.3389/fncir.2019.00001